TriangleForm |
1 |
|
1 |
1 |
|
1 |
3 |
2 |
|
1 |
7 |
12 |
6 |
|
1 |
15 |
50 |
60 |
24 |
|
1 |
31 |
180 |
390 |
360 |
120 |
|
1 |
63 |
602 |
2100 |
3360 |
2520 |
720 |
|
sum |
als |
gcd |
lcm |
1 |
1 |
0 |
1 |
2 |
0 |
0 |
1 |
6 |
0 |
1 |
6 |
26 |
0 |
1 |
84 |
150 |
0 |
1 |
600 |
1082 |
0 |
1 |
145080 |
9366 |
0 |
1 |
2167200 |
|
RectangleForm |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
3 |
7 |
15 |
31 |
63 |
127 |
2 |
12 |
50 |
180 |
602 |
1932 |
6050 |
6 |
60 |
390 |
2100 |
10206 |
46620 |
204630 |
24 |
360 |
3360 |
25200 |
166824 |
1020600 |
5921520 |
120 |
2520 |
31920 |
317520 |
2739240 |
21538440 |
158838240 |
720 |
20160 |
332640 |
4233600 |
46070640 |
451725120 |
4115105280 |
Maple T02 := proc(n,k) local i; (1/(k+1))*add((-1)^(k-i)*binomial(k+1,i+1)*(i+1)^(n+1),i=0..k) end:
TeX T_{2}(n, k) = \sum_{j=0}^{k}\frac{(-1)^{k-j}}{k+1}\binom{k+1}{j+1}(j+1)^{n+1}