
| 
| Triangular form |  
| 1 |  |  
| 1 | 0 |  |  
| 1 | 1 | 0 |  |  
| 1 | 4 | 1 | 0 |  |  
| 1 | 11 | 11 | 1 | 0 |  |  
| 1 | 26 | 66 | 26 | 1 | 0 |  |  
| 1 | 57 | 302 | 302 | 57 | 1 | 0 |  | 
| sum | als | gcd | lcm |  
| 1 | 1 | 1 | 1 |  
| 1 | 1 | 1 | 1 |  
| 2 | 0 | 1 | 1 |  
| 6 | 2 | 4 | 4 |  
| 24 | 0 | 11 | 11 |  
| 120 | 16 | 2 | 858 |  
| 720 | 0 | 1 | 17214 |  | 
| Linear form (by rows) | 
| Western | A173018 | 1,1,0,1,1,0,1,4 | 
| Eastern | A123125 | 1,0,1,0,1,1,0,1 | 
| Rectangular form | 
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 
| 0 | 1 | 4 | 11 | 26 | 57 | 120 | 
| 0 | 1 | 11 | 66 | 302 | 1191 | 4293 | 
| 0 | 1 | 26 | 302 | 2416 | 15619 | 88234 | 
| 0 | 1 | 57 | 1191 | 15619 | 156190 | 1310354 | 
| 0 | 1 | 120 | 4293 | 88234 | 1310354 | 15724248 | 
| 0 | 1 | 247 | 14608 | 455192 | 9738114 | 162512286 | 
Maple T12 := proc(n,k) local j; add((-1)^j*(1+k-j)^n*binomial(n+1,j),j=0..k) end: 
TeX T_{12}(n,k) = \sum_{j=0}^k(-1)^j\binom{n+1}{j}(k-j+1)^n