6, 12, 20, 24, 28, 30, 40, 42, 48, 54, 56, 60, 66, 70, 78, 80, 84,
88, 90, 96, 102, 104, 108, 112, 114, 120, 126, 132, 138, 140, 150, 156, 160,
168, 174, 176, 180, 186, 192, 198, 204, 208, 210, 216, 220, 222, 224, 228,
234, 240, 246, 252, 258, 260, 264, 270, 272, 276, 280, 282, 294, 300, 304,
306, 308, 312, 318, 320, 330, 336, 340, 342, 348, 350, 352, 354, 360, 364,
366, 368, 372, 378, 380, 384, 390, 396, 402, 408, 414, 416, 420, 426, 432,
438, 440, 444, 448, 456, 460, 462, 464, 468, 474, 476, 480, 486, 490, 492,
496, 498, 500, 504, 510, 516, 520, 522, 528, 532, 534, 540, 544, 546, 550,
552, 558, 560, 564, 570, 572, 580, 582, 588, 594, 600, 606, 608, 612, 616,
618, 620, 624, 630, 636, 640, 642, 644, 650, 654, 660, 666, 672, 678, 680,
684, 690, 696, 700, 702, 704, 708, 714, 720, 726, 728, 732, 736, 740, 744,
750, 756, 760, 762, 768, 770, 780, 786, 792, 798, 804, 810, 812, 816, 820,
822, 828, 832, 834, 836, 840, 852, 858, 860, 864, 868, 870, 876, 880, 888,
894, 896, 906, 910, 912, 918, 920, 924, 928, 930, 936, 940, 942, 945, 948,
952, 960, 966, 972, 978, 980, 984, 990, 992, 996, 1000
A positive integer n is said to be a Zumkeller number [A083207] if the positive factors of n can be partitioned into two disjoint parts so that the sums of the two parts are equal. We shall call such a partition a Zumkeller partition. (K.P.S. Bhaskara Rao, Yuejian Peng, On Zumkeller Numbers.)
To open the frame in another window click:
FrankBussZumkellerNumbers