Second order Eulerian numbers

A companion to A340556

Peter Luschny, Feb. 2021

You can download this SageMath notebook from GitHub.

Indexing the second-order Eulerian numbers comes in three flavors: A008517 (following Riordan and Comtet), A201637 (following Graham, Knuth, and Patashnik) and A340556, extending the definition of Gessel and Stanley. Note that we use the definition A340556.

Notations

$\left\langle\!\! \left\langle n\atop k\right\rangle\!\! \right\rangle $ A340556 second-order Eulerian numbers

$\left\langle \! \left\langle x \right\rangle \! \right\rangle _n $ second-order Eulerian polynomials

$\left[ n\atop k\right]$ A132393 Stirling cycle numbers (unsigned first kind)

$\left\{ n\atop k \right\} $ A048993 Stirling set numbers (signed second kind)

$\left[ \! \left[ n\atop k\right] \! \right] $ (A008306, A106828) associated Stirling cycle numbers (see def. below)

$\left\{ \!\! \left\{ n\atop k\right\} \!\! \right\} $ (A008299, A137375) associated Stirling set numbers (see def. below)

$\operatorname{W}_{n,k}$ A269939 Ward numbers

$\operatorname{W}_{n}(x)$ Ward polynomials

Formula 1

$$\left\langle\!\! \left\langle n\atop k\right\rangle\!\! \right\rangle = 0 \ \ (n \lt 0),\ \left\langle\!\! \left\langle n\atop k\right\rangle\!\! \right\rangle = k^n \ \ (k = 0), \\ \left\langle\!\! \left\langle n\atop k\right\rangle\!\! \right\rangle \ = \ k\, \left\langle\!\! \left\langle n-1\atop k\right\rangle\!\! \right\rangle + (2n-k)\, \left\langle\!\! \left\langle n-1\atop k-1\right\rangle\!\! \right\rangle $$

Formula 2

$$\left\langle \! \left\langle x \right\rangle \! \right\rangle _n = \sum_{k=0}^{n} \left\langle\!\! \left\langle n\atop k\right\rangle\!\! \right\rangle x^k $$

Formula 3

$$ \left\langle \! \left\langle x \right\rangle \! \right\rangle _n = x\,(x-1)^{2n} \, \left(\frac{ \left\langle \! \left\langle x \right\rangle \! \right\rangle _{n-1}}{(1-x)^{2n-1}} \right)' \quad (n \ge 1). $$

Formula 4

$$ \left\langle\! \left\langle x \right\rangle\! \right\rangle_n = (n+1)!\, (1-t)^{2n + 1}\, [x^{n+1}]\, \operatorname{Reversion}_{x}(x + t - t \exp(x)) \quad (n \ge 0)$$

Formula 5

$$\operatorname{Egf}(n) = (1 - x)^{2n + 1} \sum_{k=0}^{n} \frac{(x\,\exp(-x))^{k}\ k^{n+k}}{k!} \\ \left\langle\!\! \left\langle n\atop k\right\rangle\!\! \right\rangle = [x^k]\ \operatorname{Egf}(n) \quad (n > 0) $$

Formula 6

$$\left\langle\!\! \left\langle n\atop k\right\rangle\!\! \right\rangle \ = \ \sum \limits_{j\,=\,0}^{n-k} (-1)^j \binom{2n+1}{j}\genfrac[]{0pt}{}{n+m}{m} $$

where $m = n-k-j+1$.

Formula 7

$$\left\langle\!\! \left\langle n\atop k\right\rangle\!\! \right\rangle \ = \ \sum \limits_{j\,=\,0}^{k} (-1)^{k-j}\binom{2n+1}{k-j} \genfrac\{\}{0pt}{}{n+j}{j} $$

Formula 8

$$\sum \limits_{j\,=\,0}^{k} (-1)^{k-j}\binom{2n+1}{k-j}{n+j \brace j} = \sum \limits_{j\,=\,0}^{n-k} (-1)^j \binom{2n+1}{j}{n+m \brack m}, $$

where $m = n-k-j+1$.

A proof of this identity was given by Marko Riedel at MSE.

Formula 9

$$ \left[ n\atop n-k\right] = \sum_{j=0}^k \binom{n + j - 1}{2k} \left\langle\!\! \left\langle k\atop j\right\rangle\!\! \right\rangle $$

Formula 10

$$ \genfrac\{\}{0pt}{}{n}{n-k} = \sum_{j=0}^k \binom{n + k - j}{2k} \left\langle\!\! \left\langle k\atop j\right\rangle\!\! \right\rangle $$

Formula 11

$$ \left| n\atop k\right| = \sum_{j=0}^k \left( \binom{n + j - 1}{2k} - \binom{n + k - j}{2k} \right) \left\langle\!\! \left\langle k\atop j\right\rangle\!\! \right\rangle $$

$$ \left[ n\atop k\right] - \left\{ n\atop k\right\} = \left| n\atop n- k\right| $$

A proof of this identity was given by René Gy and Marko Riedel at MSE. See also A341102.

Formula 12

$$ \operatorname{W}(n, 0) = 0^n, \operatorname{W}(n, k) = 0 \ \ (k < 0 \text{ or } k > n),$$

$$ \operatorname{W}(n, k) = k\,\operatorname{W}(n-1, k) + (n + k - 1)\,\operatorname{W}(n-1, k-1)$$

Formula 13

$$ \operatorname{W}_{n, k} = \sum_{j=0}^k (-1)^{j+k} \binom{n+k}{n+j} \left\{ n+j \atop j\right \} $$

Formula 14

$$ \operatorname{W}_{n,k} = \sum_{j=0}^{k} \binom{n-j}{n-k} \left\langle\!\! \left\langle n\atop j\right\rangle\!\! \right\rangle $$

Formula 15

$$ \sum_{j=0}^{k} \binom{n-j}{n-k} \left\langle\!\! \left\langle n\atop j\right\rangle\!\! \right\rangle \,=\, \sum_{j=0}^k (-1)^{j+k} \binom{n+k}{n+j} \left\{ n+j \atop j\right \} \quad ( n \ge 0) $$

See Marko Riedel's proof at MSE.

Formula 16

$$ \operatorname{W}_{n}(x) = \sum_{k=0}^n \operatorname{W}(n, k)\, x^k $$

Formula 17

$$ \operatorname{W}_{n}(x) = (1 + x)^n \left\langle \! \left\langle \frac{x}{1+x} \right\rangle \! \right\rangle _n $$

Formula 18

$$ \left\langle \! \left\langle x \right\rangle \! \right\rangle _n = (1 - x)^n \operatorname{W}_{n}\left(\frac{x}{1-x}\right) $$

Formula 19

$$ \left\langle\!\! \left\langle n\atop k\right\rangle\!\! \right\rangle = \sum_{j=0}^{k}(-1)^{k-j} \binom{n-j}{n-k} \operatorname{W}_{n,j} $$

Formula 20

$$ \left[ \! \left[ n\atop k\right] \! \right] = (n-1)\, \left[ \! \left[ n-1\atop k\right] \! \right] + (n-1) \, \left[ \! \left[ n-2\atop k-1\right] \! \right]$$

Formula 21

$$ \left[ \! \left[ {n \atop k} \right] \! \right] = \sum_{j=0}^{n-k} \binom{j}{n-2k} \left\langle \!\!\! \left\langle {n-k \atop j+1} \right\rangle \!\!\! \right\rangle $$

Formula 22

$$ \left\langle \!\!\left\langle {n \atop k} \right\rangle \!\!\right\rangle = \sum_{j=0}^{n-k+1} (-1)^{n-k-j+1} \binom{n-j}{k-1} \left[\!\left[ {n+j \atop j} \right]\!\right] \quad (n \ge 1)$$

Formula 23

$$ \left\{ \!\! \left\{ n\atop k\right\} \!\! \right\} = k\, \left\{ \!\! \left\{ n-1\atop k\right\} \!\! \right\} + (n+1) \, \left\{ \!\! \left\{ n-2\atop k-1\right\} \!\! \right\}$$

Formula 24

$$ \left\{ \!\! \left\{ n\atop k\right\} \!\! \right\} = \sum_{j=0}^{n-k}\binom{j}{n-2k} \left\langle\!\!\!\genfrac<>{0pt}{}{n-k}{n-k-j}\!\!\!\right\rangle $$

Formula 25

$$ \left\langle\!\! \left\langle n\atop k\right\rangle\!\! \right\rangle = \sum_{j=0}^{k} (-1)^{k-j} \binom{n-j}{k-j} \left\{ \!\! \left\{ n+j\atop j\right\} \!\! \right\} $$

Formula 26

$$ \sum_{j=0}^{k} (-1)^{k-j} \binom{n-j}{k-j} \left\{ \!\! \left\{ n+j\atop j\right\} \!\! \right\} = \sum_{j=0}^{n-k+1} (-1)^{n-k-j+1} \binom{n-j}{k-1} \left[\! \left[ n+j\atop j\right] \! \right] $$

A proof of this identity was given by Marko Riedel at MSE.

Formula 27

Let $W(x) \,=\, $ LambertW$(x)$, then

$$ 2^n \left\langle\!\!\left\langle \frac{1}{2} \right\rangle\!\!\right\rangle_n = n! \, [x^n]\, \frac{1}{{2 + 2\operatorname{W}(- \exp((x-1)\,/\,2)\,/\,2)}} .$$

Formula 28

$$ 2^n \left\langle\!\!\left\langle - \frac{1}{2} \right\rangle\!\!\right\rangle_n = (n + 1)!\, [x^{n+1}]\, \text{Reversion}\left(\frac{6x + \exp(3x) - 1}{9}\right) \quad (n \ge 0). $$

Formula 29

$$ \, 2^n \left\langle\!\!\left\langle - \frac{1}{2} \right\rangle\!\!\right\rangle_n \, = \, 3^n W_n\left(-\frac13\right) \quad ( n \ge 0) $$

Formula 30

$$ m^{m+n} \, = \, m! \, [x^m] \frac{\left\langle \! \left\langle \,\operatorname{T}(x) \, \right\rangle \! \right\rangle _n} {(1-\operatorname{T}(x))^{2n+1}} \quad ( n \ge 0) $$

Here $\operatorname{T}(z) = - \operatorname{W}(-z)$ denotes Euler's tree function, and $\operatorname{W}$ is the principal branch of Lambert's function (A000169). See also Marko Riedel's proof on MSE.

Discussions on MSE

Topics tagged

Second-order Eulerian numbers, Lambert's W function, and Schröder's fourth problem

A Stirling number identity representing the second-order Eulerian numbers

A recurrence of the second-order Eulerian polynomials

The value of the second-order Eulerian polynomials at x = -1/2

An identity related to the second-order Eulerian numbers

Difference of the Stirling cycle numbers and the Stirling set numbers

An associated Stirling number identity related to the second-order Eulerian numbers